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ABSTRACT 

In recent decades, extreme meteorological events have become more frequent and more 

severe. Flooding, heavy precipitation and droughts, in particular, are a few of these extreme 

events that can cause widespread property damage and loss of life. The climate is always 

changing and there is a general agreement that the changes will be more amplified and occur 

more rapidly due to anthropogenic influences. As a result, it is expected that the societal and 

economic impacts of heavy precipitation, floods, and droughts will increase as the climate 

continues to rapidly change. For these reasons, continued research to improve extreme 

precipitation predictions and long-term projections is vital. With improved projections, society 

will be able to improve their efforts to prepare for and implement better management practices to 

effectively adapt to the changing climate and help reduce the impacts of a changing climate. 

A great deal of progress has already been made in extreme precipitation research in 

relation to climate change. Overall, the tendency for dry areas to get drier and wet areas to get 

wetter has been identified. However, much of the work has focused on the daily timescale, and 

much less is known about sub-daily precipitation. It is becoming increasingly more important to 

consider this time scale because of evidence that climate change could have more of an impact 

on sub-daily (e.g., 3-hourly) rather than daily precipitation. To complicate the matter, there is 

still a need to evaluate the performance of global climate models in reproducing the precipitation 

statistics at the sub-daily time scales.  

The goal of this work is to evaluate the projected changes in precipitation at both the 

daily and sub-daily time scales and, more specifically, understand whether daily or sub-daily 

precipitation extremes will change more through the end of this century. However, to understand 

future projections it is first vital to analyze model accuracy and determine how well global 
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climate models can reproduce the extreme precipitation statistics across the historical past. This 

is accomplished by comparing the historical runs for each model to observations during the same 

time period using several different methods, including a skill score analysis, using Taylor 

diagrams to visualize accuracy, and meridional plots that show intermodel variability.  

The results from this analysis show model performance for daily extreme precipitation is 

higher than that of the 3-hourly extreme precipitation. Although there are few models that do an 

adequate job of producing reliable results at the sub-daily time scale, there is an overall 

significant increase in skill as the temporal resolution becomes coarser. Variability also exists 

among models, with sub-daily precipitation having more widespread variability across every 

latitude, but daily precipitation has a wider range in potential extreme precipitation that is 

focused more in the tropics. Model performance also varies by season, resulting in higher 

performance and less variability among models for individual seasons. These results also point to 

several models that consistently perform well for both sub-daily and daily extreme precipitation, 

but it is still worth remembering that there is no guarantee that a good performance during the 

historical period ensures a good performance in the futures as well. 

The next part of the work focuses on the models with the highest performance in 

reproducing the observations. From there, it was possible to determine locations with the greatest 

changes in precipitation, the magnitude of changes, and whether sub-daily or daily extreme 

precipitation will be impacted more by climate change. Overall, extreme precipitation at both 

sub-daily and daily times scales is projected to increase globally. At the regional scale, 

precipitation is projected to primarily increase in the tropics, with smaller changes towards the 

poles. Areas of decreases in precipitation vary by model with the exception of a decrease in 

precipitation near the tropical Pacific Ocean that is seen in almost every model.  
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PUBLIC ABSTRACT 

In the fall of 2012, Hurricane Sandy devastated the East Coast of the United States with 

widespread flooding, storm surge, and wave damage. It was one of the costliest hurricanes to 

ever strike the United States with recovery efforts struggling to provide sufficient relief. At least 

72 deaths resulted directly from the storm with drowning being the most common cause of death. 

This same year, what would become one of worst droughts on record in California was just 

beginning, lasting from 2012 to 2015. Although several years of drought conditions are not 

unusual for California, this drought was the worst one seen in the last 1,200 years and resulted 

from exceptionally low precipitation and record-breaking high temperatures. 

As the climate continues to change, events like these are projected to become more 

common: how much will extreme precipitation change through the end of the century? The 

objective of this work is to explore different precipitation projections and gain a better 

understanding of how precipitation is projected to change during the 21st century. The focus is on 

precipitation at both the sub-daily and daily scales, with regional and global analyses performed 

at the annual and seasonal scales. The results can be used to understand how the public and 

decision makers will need to adapt and plan for these changes. In addition, accuracy of the 

models is also examined to gain an understanding of how models need to be improved.  
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CHAPTER 1: INTRODUCTION 

In the fall of 2012, Hurricane Sandy devastated the East Coast of the United States with 

widespread flooding, storm surge, and wave damage. It was one of the costliest hurricanes to 

ever strike the United States with recovery efforts struggling to provide enough relief. The death 

toll reached 117 people and the associated costs totaled $62 billion (Abramson 2013). Coastal 

states experienced widespread flooding from storm surge, with heavy precipitation experienced 

across many other states (Carbone et. al. 2015). At least 72 deaths resulted directly from the 

storm, with drowning being the most common cause of death.  

The same year Hurricane Sandy occurred, California was just starting to experience one 

of the worst droughts on record, ultimately lasting until 2015 (Swain 2015). Although several 

years of drought conditions are not unusual for California, this drought was the worst one seen in 

the last 1,200 years and resulted from exceptionally low precipitation and record-breaking high 

temperatures (Seager 2015). Water resources became severely depleted resulting in multiple 

emergency drought proclamations being issued and in 2015 alone this devastating drought costed 

California’s economy $2.7 billion and nearly 21,000 jobs (Rice 2015). 

Overall, the aforementioned events are not isolated cases, but there has been an 

increasing amount of extreme meteorological events in recent decades. These extreme events 

have been both expensive and have caused great losses of life (Jenkins 2013). The 2014 report 

on climate change from the Intergovernmental Panel on Climate Change (IPCC) indicates that 

heavy precipitation events have largely increased over land and there are more regions where 

heavy precipitation has increased than decreased (IPCC 2014). Global trends in droughts, on the 

other hand, have been more difficult to track, with some studies indicating an increasing trend 

and others indicating little change in drought frequency since 1950 (Dai 2013; Sheffield et al. 



www.manaraa.com

2 
 

2012). Precipitation has continued to increase in frequency and intensity through the first two 

decades of the 21st century, with annual maximum daily precipitation continuing to increase 

(Westra et al. 2012). In general, models are predicting a continued increase in global 

precipitation, with some specific regions such as the western United States, Southern Africa, and 

Australia experiencing a decrease in precipitation. Projections of mean precipitation indicate a 

general increasing trend in the deep tropics and extratropics, while a decreasing trend is expected 

in the subtropics. There is a general agreement among scientists that changes will be amplified 

by anthropogenic influences and stories like Hurricane Sandy and record-breaking droughts will 

become more common not just for the United States, but globally as the frequency and intensity 

of meteorological extremes change. More research is necessary to better understand these events 

and properly prepare to live in a rapidly changing climate.   

1.1  Literature Summary  

A great deal of progress has already been made in extreme precipitation research in 

relation to climate change, focusing on precipitation at the daily or longer time scales at both 

regional and global scales (e.g., Trenberth 2005; Zhu 2012; Chou 2012). Research focusing on 

global precipitation over the past several decades has shown a clear increasing trend in the 

intensity of global annual precipitation (e.g., Westra et al. 2012; Greve et al. 2014). The greatest 

increases have been in the tropics, mainly over the oceans due to an increase in atmospheric 

moisture from warming sea surface temperatures, and precipitation has also increased at higher 

latitudes in places such as Europe, Northern Asia, North America and South America (Trenberth 

2011; Groisman 2012). Globally, consecutive dry days have decreased since the 1950s 

(Alexander 2015). However, in some regions, such as the western United States, droughts have 

increased in intensity and frequency since the 1970s (Dai et al. 2004; Chiang 2018). These 
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increases in droughts have also been largely occurring over land in the tropics and subtropics and 

some specific locations where there have been the greatest increases in drought conditions 

include the southwestern United States, southern Asia, and all throughout Africa and the 

Mediterranean region.  

 Extreme precipitation has increased globally, with record-breaking events becoming 

more frequent and severe. Research indicates this increase is due to global warming and climate 

change (Lehmann 2015). Specific regions are seeing greater increases in extreme precipitation, 

such as the tropics and northern subtropics, while some regions, such as the southern subtropics, 

have not experienced a large change (Lehmann 2015). With the climate continuing to rapidly 

change, this trend in increasing extreme precipitation is likely to continue as well. 

 Models are projecting an averaged global increase in precipitation (Kao et al. 2011; 

Sillman et al. 2013). Projections of mean precipitation generally indicate an increasing trend in 

the deep tropics and extratropics, a decreasing trend is expected in the subtropical regions 

(Kharin 2007; O’Gorman and Schneider 2009), and, more specifically, areas prone to drought 

conditions are expected to experience more severe droughts from climate change (Wang 2016; 

Rajsekhar 2017; Carrao 2017). These areas are also primarily located in the subtropics, including 

Australia, Central Americas, and parts of southern Asia.  

 However, there is still a great deal of uncertainty with these projected changes in 

precipitation. Uncertainty primarily comes from three sources: model uncertainty, scenario 

uncertainty, and internal variability of the climate system. For global precipitation through the 

21st century, internal variability contributes to most of the total uncertainty for the first decade, 

model uncertainty generally dominates afterwards, and scenario uncertainty tends to be small 
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and almost negligible over land areas (Hawkins 2010). Ultimately this means that understanding 

and improving models is a vital part in the analysis of precipitation projections.   

There are several well-known problems that exist for models, including difficulties with 

atmospheric-ocean coupling leading to a double Intertropical Convergence Zone (ITCZ) pattern, 

and research has shown this precipitation pattern is very common with global models (Lin 2007). 

In general, the greatest variability among models is in the tropics (Long et. al. 2015). 

Considering the tropics is also where the greatest changes in precipitation have already occurred, 

we will likely continue to see the greatest changes in precipitation in that region, and therefore it 

is a significant issue that this is also where models struggle the most.  

1.2  Motivation 

Research has shown changes in extreme weather are due to anthropogenic climate change 

(e.g., Anderegg 2010; Jankovic 2016; Mann 2017; Ornes 2018). Of all the expected changes, 

extreme precipitation is one of the costliest and most dangerous with the resulting flooding 

causing widespread damage and threat to both property and life (Doocy 2013). For these reasons, 

continued research to improve extreme precipitation predictions and long-term projections is 

vital, and with improved projections, society will be able to make efforts to prepare for and 

implement better management practices to effectively adapt to the rapidly changing climate, thus 

reducing the impacts of anthropogenic climate change. 

Most of the research that has already been done has focused on precipitation at daily and 

longer time scales, and there has been little focus on the sub-daily scale. Three-hourly 

precipitation has not been as extensively looked at on a global scale as daily precipitation, and it 

is still often not evaluated in regional studies. Despite this limited knowledge, there is now 

evidence that the increase in CO2 expected with climate change has more of an impact on sub-
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daily precipitation extremes than daily ones (Zhang et al. 2017). In addition, research on 3-

hourly and daily precipitation, specifically over Europe, has also shown there are important 

differences between the time scales that cannot be ignored (Scoccimarro et al. 2014). More 

specifically, Scoccimarro et al. (2014) found the differences in intense precipitation projections 

to be up to 40% between the two time scales, and whether there is a larger intensification of 

precipitation at the sub-daily or daily scale varies by location. Although this was a regional 

study, this new evidence has highlighted the importance of further research on the impacts of 

climate change at temporal resolutions finer than daily. 

For these reasons, my work looks further into sub-daily and daily precipitation by 

exploring the impacts of climate change on global precipitation extremes at 3-hourly and daily 

time scales through the end of the century. The lack of research on sub-daily precipitation also 

means there has been little work on the capability of global climate models (GCMs) in 

reproducing the precipitation extremes’ statistics at the shorter scales; this is a research question I 

will address in my thesis to gain a better understanding of the GCMs’ performance, highlighting 

their strengths and weaknesses in reproducing precipitation extremes at the 3-hourly time scale.  

1.3  Objective and Approach 

The main objective of this thesis is to understand precipitation projections at the sub-

daily and daily scale. To accomplish this, my work is divided into two parts. The first part of the 

research focuses on model verification. Building on the insights gained from the first part, the 

second part then focuses on the projections of extreme precipitation for each model, with a 

specific focus on models that performed the best based on the results in part one.  

The analysis on model accuracy is accomplished by comparing the model output to 

observational data using a decomposition of the mean square error to produce a Skill Score for 
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each model (e.g., Hashino et al. 2007). From there, maximum precipitation for three different 

time periods (1985-2005, 2026-2045, and 2081-2100) for 16 GCMs from the Climate Model 

Intercomparison Project Phase 5 (CMIP5) are analyzed. Several maps and plots are made for 

each model, summarizing extreme precipitation projections for the models used in this study. For 

each model output, both the 3-hourly and daily time scales are used. The maximum value of 

precipitation at each grid point for every year or season was extracted, and then I computed the 

median of these maxima. The median was computed over computing the average to reduce the 

impact of outliers, it is considered to be more robust, and is easy to understand. This was done 

for the time periods of interest (1985-2005, 2026-2045, and 2081-2100) and for both 3-hourly 

and daily outputs. Representative Concentration Pathways (RCP) are used to understand possible 

precipitation projections. Some of the models do not have outputs for every RCP. A list of 

models used in this study and which RCPs are available for each model is shown in Table 1. To 

quantify the projected changes in extreme precipitation, I compare the future time slices (2026-

2045 and 2081-2100) for the different RCPs to the historical period (1985-2005) for each model 

by subtracting the projections from the historical output. In addition to analyses at the annual 

scale, I also consider the four seasons: December-January-February (DJF), March-April-May 

(MAM), June-July-August (JJA), and September-October-November (SON).  

Further analysis of the global change was conducted by taking each map and averaging 

precipitation horizontally to get a single value at each latitude. This was then plotted as a single 

meridional line on one plot to compare the historical run to each available RCP output. Similar to 

the global maps, this was done for annual sub-daily and daily precipitation and then broken down 

by season.  
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Table 1: A list of CMIP5 models used in this study and the corresponding RCP output available for each model. (“Y” indicates the RCP was 
available for the model and “N” indicates the RCP was not available).

  Research Center Country Resolution Reference Available RCPs 

Models - - - - 2.6 4.5 6 8.5 
ACCESS1-0 Research 

Organization/Bureau of 
Meteorology  

Australia 192×145  http://www.bom.gov.au N Y N Y 

ACCESS1-3 N Y N Y 
BCC-CSM1-1 Beijing Climate Center  China 128×64 http://bcc.ncc-cma.net/ Y Y Y Y 

CNRM-CM5 Centre National de 
Recherches 
Meteorologiques 

France 256×128 https://www.umr-
cnrm.fr/?lang=fr 

Y Y N Y 

FGOALS-g2 State Key Laboratory of 
Numerical Modeling for 
Atmospheric Sciences 
and Geophysical Fluid 
Dynamics 

China 128×60 http://www.lasg.ac.cn/english/ Y Y N Y 

GFDL-CM3 Geophysical Fluid 
Dynamic Laboratory 
(NOAA) 

United States 144×90 https://www.gfdl.noaa.gov/ 
  

N Y N Y 

GFDL-ESM2G Y Y Y Y 
GFDL-ESM2M Y Y Y Y 
IPSL-CM5A-LR Institute Pierre Simon 

Laplace  
France 96×96 https://www.ipsl.fr/en/ 

  
Y Y Y Y 

IPSL-CM5A-MR 144×143 Y Y Y Y 
MIROC5 Atmosphere and Ocean 

Research Institute and 
Japan Agency for 
Marine-Earth Science and 
Technology  

Japan 256×128  
https://www.jamstec.go.jp/e/ 

Y Y Y Y 

MIROC-ESM 128×64 N Y N Y 
MIROC-ESM-
CHEM 

Y Y Y Y 

MRI-CGCM3 Meteorological Research 
Institute 

Japan 320×160 http://www.mri-
jma.go.jp/index_en.html 

Y Y Y Y 

MRI-ESM1 N N N Y 
NorESM1-M Norwegian Climate 

Center 
Norway 144×96 https://cicero.oslo.no/no Y Y Y Y 
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CHAPTER 2: DATA AND METHODOLOGY 

2.1  Data Summary 

The models used in this study are 16 GCMs that come from the CMIP5 (Table 1). The 

main goal behind creating the CMIP5 project was to better understand climate variability and 

major gaps in understanding of past and future climate change. CMIP5 provides a multimodel 

context for examining the ability to predict climate focusing on the forecast ability on decadal 

time scales, why models with similar forcings result in a range of responses, and assess the 

mechanisms responsible for model differences in feedbacks associated with the carbon cycle and 

with clouds that are poorly understood. Included in CMIP5 are four scenario runs or RCP that 

are based on a range of projections of population growth, technological development, and 

societal responses. The first scenario, RCP2.6, has radiative forcing increasing through the 

middle of the century before decreasing to 2.6 W/m2, RCP4.5 and RCP6 are two intermediate 

scenarios with a low peak and decay in forcings, and RCP8.5 is the highest scenario with 

continual increases in radiative forcing through the 21st century reaching a peak of 8.5 W/m2 

(Taylor 2012).  

The GCMs used in this study include: two Commonwealth Scientific and Industrial 

Research Organization/Bureau of Meteorology (CSIRO-BOM) models (ACCESS1-0 and 

ACCESS1-3); the Beijing Climate Center Climate System Model version 1.1 (BCC-CSM1-1); 

the Centre National de Recherches Meteorologiques (CNRM-CM5); the Flexible Global Ocean 

Atmosphere-Land System model Grid-point Version 2 (FGOALS-g2); two National Oceanic and 

Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL) Earth 

System Models (GFDL-ESM2G and GFDL-ESM2M), and the GFDL Coupled Physical Model 

Version 3 (GFDL-CM3); Institute Pierre Simon Laplace (IPSL) low resolution model (IPSL-
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CM5A-LR) and high resolution model (IPSL-CM5A-MR); the Model for Interdisciplinary 

Research On Climate Version 5 (MIROC5), an earth system model (MIROC-ESM), an 

atmospheric chemistry coupled version of MIROC-ESM (MIROC-ESM-CHEM); the 

Meteorological Research Institute (MRI) earth system model Version 1 (MRI-ESM1), MRI’s 

upgraded Coupled Global Climate Model Version 3 (MRI-CGCM3); and the Norwegian Earth 

System Model (NorESM1-M).  

For observations, data from the Multi-Source Weighted-Ensemble Precipitation 

(MSWEP) Version 2 dataset were used. This is a dataset that spans from 1979-2017 and is 

available as 3-hourly and daily precipitation. It gives a full global coverage, similar to the 

models, by merging observations from gauges, satellites, and reanalyses. Observations from 

76,747 rain gauges were used and to help correct for gauge under-catch and orographic effects, 

additional observations from 13,762 streamflow stations were used to infer catchment-average 

precipitation. This method was used to determine both 3-hourly and daily precipitation 

observations (Beck et al. 2018).   

2.2  Methodology  

The quantity of interest is the median of the annual/seasonal maximum over the historical 

period (1985-2005) and the 21st century (2026-2045 and 2081-2100), for both the 3-hourly and 

daily time scales. Observations and model outputs were compared pixel by pixel after regridding 

the former to the resolution of each of the GCMs. As stated in Chapter 1.3, the capability of the 

GCMs in reproducing the historical records was quantified using a decomposition of the mean 

square error to obtain a Skill Score, SSMSE, for the median maximum precipitation annually and 

seasonally and the sub-daily and daily scale (e.g., Hashino et al. 2007; Murphy 1987): 
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𝑆𝑆𝑀𝑆𝐸 = 1 −
𝑀𝑆𝐸

𝜎𝑜
2  (1) 

SSMSE can then be broken down into three parts to better understand model accuracy and 

help identify areas the models might be lacking (e.g., Hashino et al. 2007; Bradley at al. 2016; 

Murphy 1987): 

 

𝑆𝑆𝑀𝑆𝐸 =  𝜌𝑚𝑜
2 − [𝜌𝑚𝑜 −

𝜎𝑚

𝜎𝑜
]

2
− [

𝜇𝑚 − 𝜇𝑜

𝜎𝑜
]

2
 (2) 

𝑆𝑆𝑀𝑆𝐸 = 𝑃𝑆 − 𝑆𝑅𝐸𝐿 − 𝑆𝑀𝐸 (3) 

 

where 𝜌𝑚𝑜
2  represents the potential skill (PS or the square of the correlation coefficient) which is 

the skill that could be obtained in the absence of biases and ranges from 0 to 1; µm and µo signify 

the means of modeled and observed precipitation, respectively; σm and σo are the standard 

deviation of modeled and observed precipitation, respectively. The second term of Equation (2) 

in the right side of the equation represents the conditional bias, which is known as slope 

reliability (SREL). The last term of Equation (2) is the unconditional bias or the standardized 

mean error (SME). The decomposition of the SS (SSMSE or SS) allows me to pinpoint potential 

issues and quantitatively analyze the capability of the GCMs in reproducing the observations. 

Equation (3) shows a rewritten form of Equation (2) with PS, SREL, and SME written in their 

proper locations. 

An SSMSE value of 1 represents a perfect agreement, and as the value decreases, the 

accuracy of the model decreases. For a model to obtain a high SSMSE we want PS to be high and 
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SREL and SME to be low. A model can have a high PS, but if biases are also high, it will not 

perform well. 

Taylor diagram was used as an alternative analysis of model performance, which allows 

us to compare several models to observations in terms of their correlation, their root-mean-

square (RMS) difference (through the root-mean-square error), and the ratio of their variance 

(Taylor 2001). The correlation coefficient is commonly used to quantify pattern similarity, but it 

is not possible to determine whether the two patterns have the same amplitude of variation. RMS 

difference is used to quantify differences in two fields, but it is not possible to determine how 

much of the error is due to a difference in structure and phase and how much is due to difference 

in the amplitude. In other words, the correlation coefficient and the RMS difference provide 

complementary statistical information. This diagram ultimately allows the viewer to determine 

how much of the overall RMS difference is attributed to difference in variance and how much is 

due to poor pattern correlation. 

In this diagram, the standard deviation is proportional to the radial distance from the 

origin, the correlation coefficient is related to the azimuthal angle, and the RMS error is centered 

on the reference point. The distance from the observational reference point and each model point 

represents the root mean square difference. Essentially, if a model were to fall exactly on the 

reference point, this would represent a “perfect” model with output identical to the observations. 

In addition to these synthetic and global measures, I also plotted maps directly comparing 

observations and model outputs for the historical time period to gain a better understanding of 

specific locations where models are underestimating or overestimating precipitation. 

Past research has also shown that great variability exists among climate models (Lin 

2007; Long et al 2015). To understand variability, the meridional plots for each model were used 
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to produce a composite plot of all the results. Individual plots were created for the historical run, 

annually and seasonally, and observations were provided again to understand overall model 

performance. In addition, the mean of all the models was calculated and plotted. 

As stated previously in Chapter 1.3, projected trends in extreme precipitation were 

examined by taking the maximum value of precipitation at each grid point for every year or 

season and then computing the median of these maxima. The historical reference period used in 

this study was 1985-2005, and the two future time slices used were 2026-2045 and 2081-2100. 

Global maps were created showing the difference between the projected changes in extreme 

precipitation and extreme precipitation during the historical reference period for each model. 

From there, extreme precipitation was averaged horizontally to create a new set of meridional 

plots giving a single value for each latitude. Projected precipitation was again compared to the 

historical reference period and this was done for both annual and seasonal precipitation at both 

the sub-daily and daily times scales.  
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CHAPTER 3: MODEL EVALUATION 

In this chapter, I will provide a quantitative evaluation of the performance of each of the 

models in reproducing the statistics of precipitation extremes across the globe both at the annual 

and seasonal time scales. These analyses are done for both 3-hourly and daily time scales. Global 

maps are also created for each model comparing model output to observations. Additional 

figures can be found in Appendix A-F. 

3.1  Sub-daily Scale  

3.1.1  Skill Score Analysis 

 The results from the SS analysis indicate model skill is rather low for sub-daily 

precipitation (Figures 1 and 2). Many of the models have SS values below zero, indicating a 

performance that is worse than what would have been obtained using climatology. Only eight of 

the 16 models have an SS value greater than 0, and only one model has a value greater than 0.5. 

Based on these results, the model with the greatest accuracy is FGOALS-g2, with an SS value 

just over 0.5. The model with the next highest value of SS is MRI-ESM1 (~0.4). MRI-CGCM3 

and CNRM-CM5 also have values of SS that fall close behind 0.4. 

Accuracy improves slightly for individual seasons. For DJF and MAM (JJA and SON), 

ten (nine) of the 16 models have positive SS values and the same models with positive values of 

SS annually perform comparably seasonally. IPSL-CM5-MR and MIROC5 are the two models 

that switch from negative SS annually to positive SS when broken into seasons; however, IPSL-

CM5-MR still has a negative SS in JJA and SON. MIROC5 improves slightly more seasonally, 

starting with an SS that is equal to -0.05 annually and a positive value between 0.1 and 0.2 

seasonally. However, like the results for the annual analyses, the values of SS remain fairly low 

seasonally, with most of them being less than 0.5. FGOALS-g2 consistently performs better than 
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the other models for every season. In addition, MRI-ESM1 also continues to do well seasonally, 

with ACCESS1-3 that performs comparatively well.  

 Figures 1 and 2 also show the breakdown of the SS, giving each model’s results for PS, 

SREL, and SME. PS values range from 0.2 to 0.7 at the annual and seasonal scales. Models with 

high skill scores would need to have high values of PS to start with, and this is exactly what I 

found: FGOALS-g2 has the highest value of PS annually (~ 0.7), with seasonal values ranging 

from 0.5 to 0.7. However, for JJA FGOALS-g2 does not have the highest PS and instead BCC-

CSM1-1 takes its place, with a PS value of about 0.6. Several other models with high PS values 

annually and seasonally include CNRM-CM5, MRI-CGCM3, MRI-ESM1, ACCESS1-0 and 

ACCESS1-3.  

 When I examine SREL and SME (i.e. conditional and unconditional biases, respectively), 

I find that conditional biases are generally lower than unconditional biases both annually and 

seasonally. Models with the highest SS have low biases, including FGOALS-g2. A few of the 

models that have moderate PS also have high biases, resulting in an overall low SS values. In 

general, models that ended with negative or low SS also had low PS and high SREL and SME.  

Model accuracy is also shown using Taylor diagrams (Figures 3 and 4). Points that fall on 

the dashed line from the reference point will have the correct standard deviation and therefore 

have the correct variability. The results of the analysis are for annual (Figure 3) and seasonal 

(Figure 4) 3-hourly precipitation. Of the models analyzed, FGOALS-g2 falls the closest to the 

reference value, just outside the 10.0 mm root-mean-square (RMS) contour with a standard 

deviation (SD) just over 7.5 mm and correlation coefficient of about 0.7. However, based on this 

diagram, there are several other models that are performing about as well as FGOALS-g2 

annually, including CNRM-CM5, MRI-ESM1, and MRI-CGCM3.  
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 Like FGOALS-g2, CNRM-CM5 has a correlation coefficient of about 0.7, but has a 

lower SD that is farther away from the reference value with a value just under 7.5 mm. The RMS 

for this model is also near the 10-mm line. MRI-ESM1 and MRI-CGCM3, on the other hand, 

have a correlation coefficient lower than FGOAL-g2 at about 0.6 and have about the same value 

for SD of ~8.75 mm. These models have a slightly higher RMS value compared to the other high 

performing models, with a value of about 11 mm.  

Another important note is the SD for all the models for sub-daily precipitation falls below 

the reference standard deviation (dashed line). This indicates the range of values seen in the 

models is much smaller (i.e. have a smaller variability) than observations. The correlation 

coefficient is also low for most models with the exception of a few with values greater than 0.6. 

Otherwise, most models have a correlation coefficient of about 0.4 or less. As a result, many of 

the models also have high MSE values (~13.0 mm). One interesting outlier is the MIROC-ESM-

CHEM model which has a value of SD the closest to the reference; however, this model also has 

a low value of the correlation coefficient, resulting in the highest MSE of about 15 mm. Figure 1 

shows the annual SS value for MIROC-ESM-CHEM to be about 0.3 and thus it still ranks the 

fourth highest in terms of SS despite having relatively high values of MSE and low values of the 

correlation coefficient.  

The seasonal analysis (Figure 4) continues to have FGOALS-g2 as one of the most 

accurate models with it falling the closest to the reference point, especially in DJF and MAM. 

FGOALS-g2 does not strongly stand out with respect to the other models for the different 

seasons, with several GCMs being about the same distance from the reference point. For JJA and 

SON the models that perform about the same as FGOALS-g2 include ACCESS1-0 and 

ACCESS1-3. Similar to the results for annual precipitation, all of the models fall below the 
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dashed SD line and many have consistently low values of the correlation coefficient. MIROC-

ESM-CHEM is again an outlier seasonally falling close to the SD reference line. In general, 

model skill remains low because of the low values of SD and correlation coefficients. 



www.manaraa.com

17 
 

Figure 1: A set of bar graphs showing the values of SS (top right) and its different components: PS (top left), SME (bottom left) and SREL 
(bottom right) at the annual scale. The results are for model outputs at the 3-hour time scale. 
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 Figure 2: A set of bar graphs showing the values of SS (far right column) and its components: PS (first column) SREL (second 
column), and SME (third column). This was done for DJF (first row), MAM (second row), JJA (third row), and SON (bottom row). 

The results in this figure are for 3-hourly precipitation. 
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Figure 3: A Taylor diagram for 3-hourly annual precipitation. Colored numbers represent each of 
the 16 models considered here and a red star represents the observed precipitation. RMS 

difference is proportional to the distance from the reference point, SD is proportional to the 
radial distance from the origin, and the correlation coefficient is related to the azimuthal angle. 
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Figure 4: Same as Figure 3, but for DJF (upper left), MAM (upper right), JJA (lower left), SON (lower right) 
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3.1.2  Observation-Model Map Analysis 

The map comparisons (Figures 5 and 6) show that most of the variability between models 

and observations is near the equator, largely between 30° N and 30° S, which is comparable to 

other analyses of global precipitation (Chadwick et. al. 2013; Long et. al. 2015). Models 

generally struggle at representing precipitation in the tropics due to problems with ocean-

atmospheric coupling (Zhang et. al. 2015; Lin 2007). This typically results in a double ITCZ 

pattern which is fairly prominent in all of the best performing models in this analysis. FGOALS-

g2 in particular shows a very well defined double ITCZ precipitation pattern (Figure 5). The 

pattern is clear for both annual and seasonal precipitation. Generally, the models tend to greatly 

underestimate precipitation, with the largest errors being in the tropics and better accuracy 

towards the poles.  

Several models such as FGOALS-g2, MRI-CGCM3, and MRI-ESM1-1, greatly 

overestimate precipitation in the tropical Pacific and the El Niño Southern Oscillation (ENSO) 

region (Figure 5, Appendix E.1, and F.1). Other locations where the models tend to overestimate 

precipitation include Northern Africa, Australia, parts of Asia, and the western United States. 

However, specific areas of overestimation vary substantially by model and problematic areas for 

one model might not be for another.  

Despite the errors in magnitude, most models still do an adequate job of matching the 

precipitation patterns. Maxima in annual precipitation are seen near the equator and extended 

over the Western Pacific Ocean and a minimum in precipitation is seen in the ENSO region. 

Almost every model consistently displays this feature. Another specific maximum can be seen in 

northern South America over the Amazon Rainforest. Models seem to underestimate the 

magnitude of this maximum, but it is still a prominent feature in most GCM outputs. Another 
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specific minimum in precipitation is in North Africa over the Sahara Desert, which is a location 

that some models tend to overestimate. One specific example of this is FGOALS-g2 which 

overestimates precipitation for this region (Figure 5). 

Locations that experience the largest changes in precipitation throughout the year, which 

is shown in the seasonal analyses, are predominantly in the subtropics (about 30° N and 30° S). 

A maximum in precipitation is located just east of Asia over the Northern Pacific Ocean for 

annual precipitation, but this maximum weakens during certain times of the year. Precipitation is 

lower here during DJF and MAM and then increases in JJA and SON. This pattern is not well 

displayed in FGOALS-g2, but is more prominent in other models such as ACCESS1-0 and 

ACCESS1-3 (Figure 6 and Appendix B.1). Figure 6 shows the results for ACCESS1-0, which 

does a reasonable job of reproducing the precipitation patterns including some of the more 

specific seasonal changes seen in observations. However, this model struggles with the 

magnitude of precipitation significantly more than FGOALS-g2. ACCESS1-0 generally greatly 

underestimates precipitation, with only a few specific areas of slight overestimation.   
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Figure 5: Maximum median 3-hourly precipitation (mm) for 1985-2005 for observations (left 
column), FGOALS-g2 (middle column), and the difference between them (right column). The 

results shown are for annual (first row), DJF (second row), MAM (third row), JJA (fourth row), 
and SON (bottom row) precipitation. The observations have been regridded to the GCM 

resolution (left column). 
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Figure 6: Same as Figure 5, but for ACCESS1-0. 
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3.1.3  Intermodel Variability  

To further compare model accuracy and understand variability among models, composite 

meridional plots were created by averaging extreme precipitation horizontally for each model to 

get a single value at each latitude (Figure 7). The results for every model were then plotted 

together on one graph as dark grey lines and the range seen in the models is shaded in grey. 

Along with the meridional output for each model, observations and the mean of the models are 

also plotted in blue and red, respectively.  

There is a great amount of variability among models at almost every latitude. For all the 

plots, variability is the greatest near the tropics with large peaks in variability just north and 

south of the equator. An additional maximum in variability is located in the mid-latitude regions. 

However, it is important to note that this additional maximum is largely due to one outlier 

(MIROC-ESM-CHEM) among all the models and when it is excluded, there is significantly less 

variability among models in the mid-latitudes both annually and seasonally. The least amount of 

variability is seen at the poles.  

Model variability is the greatest for annual precipitation with a range of about 20 mm at 

its highest peak in the tropics (Figure 7). Seasonally, the greatest variability is seen during SON 

and SON at about 15 mm. The greatest variability for individual seasons also shifts locations 

throughout the year, but there are two clear peaks in precipitation just north and south of the 

equator, which also exhibits the greatest amount of variability. Variability is significantly greater 

in the northern hemisphere than the southern hemisphere in SON, slightly greater in the southern 

hemisphere in MAM, and the two peaks are about even in DJF and JJA. These peaks in 

variability range from about 10 to 15 mm.  

Precipitation is largely underestimated by every model except for MIROC-ESM-CHEM, 

which again is a large outlier among the models and greatly overestimates precipitation in the 
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upper latitudes and up through to the poles. The mean of the model outputs was also included to 

help give a representation of all the models examined in this study, falling below the observed 

precipitation annually and for all four seasons at every latitude, with the differences between the 

two that are more pronounced annually versus seasonally. Annually, the largest difference 

between the two is about 25 mm, while seasonally the largest difference between the two is 

about 20 mm in JJA and SON. These large differences are both seen in the tropics at about 15° 

N. In both cases, this is a significant underestimation in precipitation and again highlights the 

significant problem these models have with accurately representing precipitation at the sub-daily 

scale.    
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Figure 7: Meridional plots of the maximum median sub-daily precipitation (mm) for the models used in this study for the 1985-2005 
reference period. Dark grey lines represent individual models and the shaded grey region is the range of values given by the models. 

The mean of all the models is also plotted (red) along with the observations (blue). This was done at the annual (Column 1) and 
seasonal scales: DJF (Column 2), MAM (Column 3), JJA (Column 4), and SON (Column 5). 
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3.2  Daily Scale  

3.2.1  Skill Score Analysis 

 At the daily scale, the values of SS are significantly better both annually and seasonally 

compared to the results from the sub-daily analysis (Figures 8 and 9). Of the 16 models, all but 

two have a value of SS greater than 0 at the annual scale. Of these models, four of them have an 

SS value greater than 0.5, suggesting that they were able to reproduce the observations 

reasonably well.  

FGOALS-g2 has the highest value of SS, but several other models have similar values 

including ACCESS1-0, ACCESS1-3, and CNRM-CM5. All four of these models have values of 

SS between 0.5 and 0.6. The two models that have negative SS values at the annual scale are still 

close to zero and are still greater than -0.1. From the seasonal analyses, it is clear model accuracy 

generally improves for individual seasons, and all models have SS values greater than zero for 

each season. SS values are consistently greater than 0.5 for most of the models across all four 

seasons, with the models that performed well annually continuing to show the best performance 

for individual seasons. FGOALS-g2 has the best SS for DJF and MAM while ACCESS1-0 has 

the best SS for JJA and SON. However, neither stands out far ahead of others models and several 

others perform about as well as ACCESS1-0 and FGOALS-g2.  

Looking at the breakdown of the annual SS, PS is higher for all the models compared to 

the 3-hourly scale. Many models that performed poorly for the sub-daily analysis have improved 

greatly for the daily analysis, resulting in significantly higher PS and lower SREL and SME. For 

annual sub-daily precipitation, the smallest PS was about 0.25, which increases to ~0.4 at the 

daily scale. This is large leap in the PS and is a large reason why SS has also improved across the 

board. Models seem to have a higher SME compared to SREL, with BCC-CSM1-1 being an 



www.manaraa.com

 

29 
 

exception. MRI-CGCM3 and MRI-ESM1 also have small SME values, but they still have SREL 

values that are fairly large compared to the other models that also end with high SS values. IPSL-

CM5-MR has a near 0 SREL value, but a much higher SME, especially when compared to other 

models that perform well. 

Seasonally, SREL and SME are both generally lower than SREL and SME values for 

annual precipitation in most cases. Models such as FGOALS-g2, ACCESS1-0, ACCESS1-3, and 

CNRM-CM5, the four models that have the highest SS values, have near 0 SREL, and SME has 

also decreased significantly for these models for each season. IPSL-CM5-MR, MRI-CGCM3, 

and MRI-ESM1 also have low SREL and SME seasonally.  

 Taylor diagrams were made as well for daily annual and seasonal precipitation (Figures 

10 and 11). Annually, the model that falls the closest to the reference point is ACCESS1-0 with a 

correlation coefficient of about 0.75, SD of just over 24 mm, and an MSE of about 23 mm. 

FGOALS-g2 still performs well as the next closest model to the reference point. ACCESS1-3 

and CNRM-CM5 also do a good job, with correlation coefficients greater than 0.6, MSE falling 

within the 30.0 mm contour line and SD between 24 and 30 mm. Unlike sub-daily precipitation, 

the models have a much larger spread with generally higher values of the correlation coefficient 

and SD values much closer to the reference line. All models for the daily analysis have 

correlation coefficients greater than 0.4, with most GCMs located above or just below the 0.6 

line. SD values are less than the reference SD except for MRI-CGCM3 (which falls on the 

reference line), MRI-ESM1-1, and BCC-CSM1-1 (which both have SD values greater than the 

reference point).   

 The seasonal analysis continues to have ACCESS1-0 being the closest to the reference 

point for all four seasons, with FGOALS-g2 being close behind it for DJF and MAM. JJA and 
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SON both have several models clustered at about the same distance from the reference point just 

behind ACCESS1-0, including ACCESS1-3, MRI-CGCM3, MRI-ESM1, FGOALS-g2, and 

CNRM-CM5. These models also do well for DJF and MAM. Models have slightly more 

variability in accuracy for DJF and MAM and are slightly more clustered for JJA and SON. For 

all four seasons, the models continue to have values of the correlation coefficient greater than 0.4 

(with several being greater than 0.6 and near 0.7) and all models except for BCC-CSM1-1 also 

fall between the 16.0 and 24.0 mm MSE contours. 

 The SD for MRI-ESM1-1 is greater than the observations for the annual analyses, but is 

smaller than the SD for all four seasons. MRI-ESM1-1 and MRI-CGCM3 are on or near the 

reference line for DJF and MAM, but are much smaller than the reference point for JJA and 

SON. BCC-CSM1-1, however, lies further away from all the other models across the four.
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Figure 8: Same as Figure 1, but for annual daily precipitation. 
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Figure 9: Same as Figure 2, but for seasonal daily precipitation. 
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Figure 10: Same as Figure 3 but for daily annual precipitation. 
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Figure 11: Same as Figure 4, but for daily seasonal precipitation. 
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3.2.2  Observation-Model Map Analysis 

 Like the SS analysis indicated, models do a reasonable job at reproducing observations in 

both location and magnitude at the daily scale (Figure 12). The pattern for daily precipitation is 

similar to the sub-daily one, with precipitation being the largest near the equator in the tropics 

and also the smallest in the ENSO region.    

 According to this analysis, models have the greatest problems with precipitation in the 

tropics. In general, model accuracy improves towards the poles with little to no errors in some 

areas and accuracy that is about the same for annual precipitation and individual seasons. 

Locations characterized by the greatest errors vary slightly by season, but the magnitude of the 

error is about the same annually and seasonally. Models tend to underestimate precipitation 

throughout most of the tropics and overestimate near the ENSO region and typically drier 

regions such as locations over Africa and Australia. Precipitation overestimation and 

underestimation still vary between models, but the areas listed are common problem locations for 

a majority of the models in the study. For example, FGOALS-g2 underestimates precipitation in 

the western United States (Figure 12); a few of the other best performing models (e.g., MRI-

CGCM3 and MRI-ESM1-1; Appendix E.5 and F.5) also have large underestimation in this area, 

while models such as ACCESS1-0 and ACCESS1-3 (Appendix A.4 and B.4) appear to more 

accurately represent precipitation for this location.  

Models also do a good job of representing the precipitation pattern shown in the 

observations. As previously described, the general pattern has the heaviest precipitation in the 

tropics near the equator with a minimum in precipitation near the ENSO region. There is also 

high precipitation in the west Pacific and Atlantic Oceans as far as 30° N and 30° S of the 

equator and there is an additional maximum in precipitation over the Indian Ocean. Heavy 
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precipitation shifts in location by season resulting in it being distributed more equally between 

hemispheres in the tropics in JJA and SON and a maximum in precipitation just north of the 

equator and east of Asia. In DJF and MAM, on the other hand, heavy precipitation decreases in 

this location. Models such as FGOALS-g2, ACCESS1-0, ACCESS1-3, CNRM-CM5, MRI-

CGCM3, MRI-ESM1 all match the general pattern annually and also have this shift in 

precipitation with seasons (Figure 12, Appendix A.4, B.4, D.5, E.5, and F.5).  

From the analysis of both sub-daily and daily precipitation, it is evident there are several 

models that do a reasonable job representing precipitation, but there are still significant 

differences in specific details and precipitation intensity. Of the 16 GCMs analyzed, FGOALS-

g2 consistently performs the best or better than most models and, therefore, will be the focus of 

most of Chapter 4. However, because FGOALS-g2 does not perform significantly better than 

other models and there are several that perform just as well and even better in some cases for 

both sub-daily and daily precipitation, several other models will be discussed in the second part 

of this study as well. These models will be used to look further into specific locations that are 

projected to have significant changes in precipitation and understand the magnitude of the 

changes. With that said, it is worth remembering that there is no guarantee that a good 

performance during the historical period ensures a good performance in the futures as well.  
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Figure 12: Same as Figure 5, but for daily precipitation and FGOALS-g2. 
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3.2.3  Intermodel Variability 

The daily plots have a significantly different amount of variability than what is seen at 

the sub-daily scale. MIROC-ESM-CHEM, which was a strong outlier for sub-daily precipitation, 

performs significantly better for daily precipitation, resulting in much less variability among 

models, particularly towards the poles and in the mid-latitudes where I previously saw a large 

amount of variability due to this outlier (Figure 13). Again, the greatest variability among models 

is in the tropics and there are two peaks in variability just north and south of the equator, but it is 

difficult to differentiate the two peaks for daily precipitation annually.  

Variability is the greatest at the annual scale with a range of 75 mm at its highest peak in 

the tropics and variability at higher latitudes has decreased significantly. Seasonally, variability 

is also high in the tropics for daily precipitation with a range of 50 mm at its highest peak, which 

is seen in MAM in the tropics. In the seasonal analysis, MAM has the greatest amount of 

variability in the tropics and DJF has the least amount of variability in the tropics.  

Similar to annual precipitation, there are generally two peaks in variability that fall just 

north and south of the equator at the seasonal scale, but depending on the season the peaks shift 

and merge. In DJF and MAM, variability is larger in the southern hemisphere, with the peak in 

the northern hemisphere almost being lost in it. In JJA and SON, the larger peak shifts to the 

northern hemisphere, and the southern peak has almost completely disappeared in SON.  

The mean of the models and the observations were again included in these plots (Figure 

13). Models tend to still underestimate precipitation at the daily scale, but it is evident there is 

great improvement by comparing the observations and the mean of the GCMs; this is particularly 

true at the seasonal scale. Annually, the greatest difference between observations and the mean 

of the GCMs is about 30 mm at about 15° N. Seasonally, the greatest difference is about 50 mm 



www.manaraa.com

 

39 
 

at 15° N in JJA and the closest agreement between observations and models is during DJF with a 

difference of about 50 mm at 15° N.  
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Figure 13: The same as Figure 7, but for daily precipitation. 
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CHAPTER 4: RESULTS  

This analysis primarily focuses on the models that performed the best for sub-daily and 

daily precipitation based on the results in the previous chapter: ACCESS1-0, ACCESS1-3, 

FGOALS-g2, CNRM-CM5, MRI-CGCM3, and MRI-ESM1. Selected figures from these models 

are used as examples, while Appendices A-F provide the complete set of figures. Outputs from 

other models not listed are still evaluated, and general tendencies among all models are discussed 

in the following sections, but specific figures for these models are not provided.   

4.1  Sub-daily Precipitation Results 

 When examining the different RCP outputs, the results are similar to other studies on 

global precipitation with precipitation largely increasing and a “wet-get-wetter and the dry-get-

drier” pattern (Trenberth 2011; Langenbrunner et. al. 2015). The least amount of change is seen 

for RCP 2.6 in the 2026-2045 time period, which has lower greenhouse gas concentrations 

(Figure 14). Higher greenhouse gas concentrations, on the other hand, result in a greater 

magnitude of changes in precipitation. Changes (both increasing and decreasing) are more 

significant towards the end of the century, which relates back to greenhouse gas concentration 

trends in the RCPs. Generally, there are mostly increases in precipitation with some specific 

areas where decreases are more dominant, primarily in locations that already experience heavy 

droughts, such as the western United States and parts of Africa. The greatest increases and 

decreases fall within the tropics between 30° N and 30° S for all the models, but the magnitude 

of the change and specific locations with the greatest change vary by model. Based on this 

analysis, it is evident that increases in precipitation will be of a higher magnitude than the 

decreases. Increases (decreases) are projected to be greater (smaller) than 10 mm for most of the 

models analyzed.  
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Looking at annual precipitation, most of the models have an area of large increases in 

precipitation close to the equator. Models tend to show either no change or a decrease in 

precipitation directly on the equator in the eastern Pacific Ocean, with decreases also extending 

south into the ENSO region for several of the models including ACCESS1-3 and ACCESS1-0 

(Figure 14 and Appendix A.2). In general, the areas where decreases in precipitation are 

prominent are comparable to locations other studies have shown to be likely areas of decreases 

(e.g., Liu 2013; Carrao 2017); this includes locations like Australia, Central America, and the 

western United States. ACCESS1-3, for example, exhibits decreases in several of these locations 

(Figure 14), but specific locations of decreasing precipitation vary by model and in the case of 

ACCESS1-3 output, increases in precipitation throughout the tropics are also a prominent 

feature.   

Seasonal changes vary greatly by model. In general, extreme precipitation in the northern 

hemisphere changes more in JJA and SON and precipitation in the southern hemisphere changes 

more in DJF and MAM. The magnitude of the seasonal changes is smaller than the annual 

changes in precipitation. Similar to the annual precipitation, the greatest changes are seen in the 

tropics between about 30° N and 30° S and these observed changes are mostly increases across 

the globe, but there are some areas where precipitation decreases. For instance, in the northern 

hemisphere there are primarily decreases in the western United States and in the southern 

hemisphere, most of the decreases in precipitation are seen over Australia and the ENSO region. 

However, as with the results for annual precipitation, results vary by model.  

The meridional plots give us a good insight into general changes that we can expect to 

see at each latitude. The heaviest precipitation is located just north and south of the equator with 

a slight decrease in precipitation right at the equator. These precipitation maxima shift slightly by 
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season (Figure 15). In SON, the precipitation peak in the northern hemisphere is larger than the 

one in the southern hemisphere, in DJF and JJA the two peaks are closer in magnitude with the 

northern hemisphere peak still being slightly greater, and in MAM the southern peak has a 

greater magnitude than the northern one.  

Both seasonally and annually, the magnitude of the change is much smaller near the poles 

and much larger near the equator and, similar to the results seen in the global maps, changes in 

precipitation are larger towards the end of the century. However, a few models exhibit small 

decreases in precipitation. For example, FGOALS-g2 shows precipitation decreasing right at the 

equator towards the end of the century, but also shows increases in precipitation at almost every 

other latitude (Figure 15). 

Other models such as ACCESS1-0 and ACCESS1-3 (Appendix A.3 and B.3) also have 

decreases in precipitation, but these changes are small and vary by season. Similar to what was 

mentioned before, the models project an increase in precipitation through the end of the century, 

and the most significant changes are expected to be in the tropics. Most of the models confirm 

the large increases in precipitation near the equator and decreases near the ENSO region. Other 

areas with decreases in precipitation still include Australia, west of Australia over the Indian 

Ocean, Central America, and the western United States (Figure 14). The changes also vary by 

model.  
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Figure 14: Median maximum 3-hourly precipitation (mm) for ACCESS1-3. The results for the RCPs 4.5 and 8.5 (Columns 3 and 5 
represent the differences between the projected changes (2081-2100) and the historical period (1985-2005; Column1). The columns 
for RCPs 2.6 and 6.0 (columns 2 and 4) are empty because this GCM does not have outputs for those RCPs. Results are for annual 

precipitation (Row 1), DJF (Row 2), MAM (Row 3), JJA (Row 4), and SON (Row 5).
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Figure 15: Zonally averaged median maximum sub-daily precipitation (mm) for FGOALS-g2. 
Results for RCPs were found the same way as described in Figure 14 and then averaged by 

latitude. These results are for 2026-2045 (Top Row) and 2081-2100 (Bottom Row) at the annual 
scale (Column 1), and seasonal scale: DJF (Column 2), MAM (Column 3), JJA (Column 4), and 

SON (Column 5). 
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4.2  Daily Precipitation Results 

 Similar to results for the 3-hourly precipitation, there is a clear relation between 

greenhouse gas concentrations and precipitation. The greatest changes that occur between the 

historical reference period and projections are shown in the RCP 8.5 output for each model. 

There are also greater changes towards the end of the century with the greatest changes occurring 

in the 2081-2100 time period (Figure 16 and Appendix C.4).  

 The greatest changes in magnitude are in the tropics, generally between 30° N and 30° S. 

Models show a general agreement that the greatest increases will be near the equator and the 

greatest decreases will be near the ENSO region, with other specific locations of increases and 

decreases that vary by model. For example, models ACCESS1-0 and ACCESS1-3 (Appendix 

A.6 and B.6) show significant decreases in annual precipitation over the Indian Ocean and 

Australia, while other models do not have any decreases in these areas and some models even 

display no decreases in precipitation, with increases being dominant across the globe. The 

magnitude of change for FGOALS-g2 at the daily scale is much larger than what is seen at the 

sub-daily one, with the greatest increase and decrease in precipitation having a magnitude greater 

than 25 mm for RCP 8.5 in the 2081-2100 time period (Figure 16). Looking back at sub-daily 

precipitation for FGOALS-g2 for this same RCP and time period, the greatest increase and 

decrease in precipitation have a magnitude of 10 mm (Appendix C.2). Based on these results, we 

would expect daily precipitation to have a larger change than sub-daily precipitation. 

Seasonally, models generally show the greatest increases at or near the equator with the 

greatest decreases over the ENSO region. Models indicate precipitation will increase more in the 

northern hemisphere’s tropics during JJA and SON, but precipitation is slightly more evenly 

spread for DJF and MAM. However, this is not the case for all models. For example, FGOAL-g2 

does not show this shift in precipitation increases and instead has precipitation increasing in DJF 
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and MAM (Figure 16). Areas of large decreases vary greatly among models, but as previously 

stated, the ENSO region remains an area where models consistently show decreases in 

precipitation and other areas some models exhibit decreases include Australia, over the Indian 

Ocean, the western United States, and Central America. The magnitude of change is smaller at 

the seasonal scale than the annual scale.  

The meridional plots give further insight into how precipitation is projected to change by 

latitude (Figure 17). Compared to the historical reference period for each model, there is a clear 

increase in precipitation at about every latitude, with the greatest increase seen in the tropics and 

less of a change (and in some cases no change) near the poles. FGOALS-g2 is one of the only 

models that shows a decrease in precipitation and this is right along the equator (Figure 17). This 

is not surprising considering the global maps also showed a strong decrease in precipitation 

along the equator, while increases in precipitation are dominant everywhere else for FGOALS-

g2.  

Seasonally, there are several models that indicate a shift in maximum precipitation with 

the maximum north of the equator being larger in SON, the maximum south of the equator being 

larger in MAM, and both peaks tending to be about even in DJF and JJA. The shift in 

precipitation can be seen in several models including FGOALS-g2, MRI-ESM1-1 and MRI-

CGCM3 (Figure 17, Appendix F.8, and E.8). This is due to the shift in the ITCZ with seasons. 

However, due to the double ITCZ pattern that is typically seen in the tropics, precipitation 

between the equator and 15° S is likely misrepresented and overestimated on these plots as well 

as the global plots. This is also a problem seen in sub-daily precipitation and could be the source 

of the shift in those plots as well.  
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As previously stated, model projections show an increase in precipitation at almost every 

latitude compared to the model’s historical reference period. Projections show the precipitation 

pattern annually and seasonally are about the same for the historical reference period compared 

to the projections. Figure 17 also confirms the role greenhouse gas concentrations play on the 

changes with RCP 2.6 showing the smallest change, RCP 8.5 showing the greatest change, and 

the greatest changes in precipitation occurring towards the end of the century. 
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Figure 16: Same as Figure 14, but for FGOALS-g2 output for RCPs 2.6 (Column 2), 4.5 (Column 3), and 8.5 (Column5) and is for 
daily precipitation. RCP 6.0 is unavailable for this model, so one column (Column 4) is left empty. 
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Figure 17: Same as Figure 15, but for FGOALS-g2 and daily precipitation. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

5.1 Summary  

 The goal of this work was to evaluate projected changes in precipitation at both the daily 

and sub-daily time scales. The first step was evaluating model accuracy with respect to the 

observations over the historical past. With a better understanding of model performance, the next 

goal was to examine the results for the best performing models and determine potential changes 

in extreme precipitation through the end of the century. In addition, I also wanted to understand 

whether daily or sub-daily precipitation would change more through the end of the century.  

From the skill score model evaluation, it is evident that accuracy is greater for daily than 

3-hourly precipitation. Biases are consistently lower and correlation values are consistently 

higher for daily precipitation. FGOALS-g2 performs relatively well for sub-daily precipitation 

both annually and seasonally and tends to stand out compared to the performance of other 

models. However, for daily precipitation, accuracy greatly improves, and thus multiple models 

perform well, including FGOALS-g2, but other models such as ACCESS1-0, ACCESS1-3, and 

CNRM-CM5 have high skill as well.  

Comparing global plots of sub-daily and daily precipitation to observations confirms the 

results from the decomposition of the skill score, with models that have higher accuracy for daily 

precipitation, and also reveals where the greatest errors are. Generally, models are more accurate 

closer to the poles and the largest errors are in the tropics between 30° N and 30° S. For most 

models, underestimation of precipitation is the largest problem, as also highlighted by the values 

of the unconditional bias. There are few areas of overestimation particularly near the ENSO 

region, which is likely due to a double ITCZ pattern that is seen in many of the models. MIROC-

ESM-CHEM is the only model that struggles more with overestimation and has few areas where 
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precipitation is underestimated. The overestimation for this model is more significant for sub-

daily precipitation over daily precipitation, but for daily precipitation, it is still a significant 

problem in the tropics.  

Variability among models also produces errors that need to be considered. The largest 

amount of variability is in the tropics, with models showing more agreement towards the poles. It 

is also evident variability among models is generally larger for sub-daily precipitation. However, 

the variability for daily precipitation is not negligible and also needs to be considered when 

examining the results. The results from all the models were averaged and plotted on these plots 

as well as the average observations, and when comparing the two, it is evident most of the 

models largely underestimate precipitation at both time scales. 

Compared to the historical runs for each model, there is a general increase in 

precipitation with few areas of decreasing precipitation that vary by model. In general, most 

models show a large increase in precipitation in the tropics, and one particular region that 

consistently shows decreases is the ENSO region. More specific locations associated with the 

greatest increases and decreases vary by season depending on the model. Largely, models show a 

more significant increase in precipitation just north of the equator in JJA and SON and less 

significant changes in DJF and MAM. These patterns are true for both sub-daily and daily 

precipitation. Looking at the specific magnitude of changes in precipitation indicates daily 

precipitation will change more than sub-daily precipitation, which is true for both increases and 

decreases in precipitation.   

 In these models there is also a clear connection between precipitation and greenhouse gas 

concentrations. The greatest precipitation changes are seen in the outputs for RCP 8.5, the RCP 

with the greatest greenhouse gas concentrations, and is shown to have an impact on both 
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increases and decreases in precipitation for sub-daily and daily precipitation. There is also a 

connection between time and precipitation changes, with changes of a higher magnitude for the 

time period 2081-2100. 

 When averaged by latitude, there will be a general global increase in precipitation. The 

global maps show that the increases will be more widespread than the decreases, and this 

confirms that globally precipitation will increase more than it will decrease. Precipitation will 

increase the most in the tropics, with smaller changes closer to the poles. Comparing these plots 

for sub-daily and daily precipitation indicates that the magnitude of the change will be larger for 

daily precipitation than sub-daily, confirming what is seen in the global maps.  

5.2 Conclusions  

 In recent decades, precipitation has changed greatly. In some areas precipitation has 

increased in frequency and intensity causing more significant flooding, and other areas have 

experienced more intense and longer droughts resulting in a lack of water security. It is also 

evident that this trend will continue through the end of the century as greenhouse gas 

concentrations increase and climate continues to change rapidly.  

 This study has confirmed many of the changes past works have shown and explores a 

research area, global changes in sub-daily precipitation compared to daily precipitation, which 

has not been explored in great detail. Precipitation is projected to increase in some locations 

while it will decrease in others, and the largest changes will be in the tropics between 30° N and 

30° S, particularly over the oceans. Both sub-daily and daily precipitation will be impacted by 

these climate changes. However, based on this analysis there is still a lot of uncertainty on what 

exactly will happen. Model accuracy has improved in recent years, and I expect the new 
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generation of models to mitigate some of these issues and create higher confidence in projected 

precipitation.   

 Further research is necessary to improve our understanding of projected precipitation 

changes. Variability among models is still high and accuracy is generally low, especially at sub-

daily timescales. For these reasons further research into improving sub-daily precipitation 

accuracy, and model accuracy in general, is important moving forward. Future work could try to 

examine the reasons for the differences in performance among the different models. Moreover, 

analyses at the regional scale could provide more details about the performance of the models for 

different land regions. Finally, while my emphasis has been on the median of the maxima, other 

quantities could have been considered, including expanding the work on extremes (e.g., 

computing statistics related to the frequency of precipitation exceeding high thresholds) or 

focusing on overall precipitation amounts accumulated over a given season or year. These 

additional analyses would complement the results in this thesis, providing a perspective on 

different aspects of precipitation and its changes. With more work, we can gain a better 

understanding of future trends in precipitation and implement best management practices. 
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APPENDIX 

A. ACCESS1-0 

A.1 Median Maximum Sub-Daily Precipitation (2026-2045) 
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A.2 Median Maximum Sub-Daily Precipitation (2081-2100) 
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A.3 Average Median Maximum Sub-Daily Precipitation 
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A.4 Median Maximum Daily Precipitation Model-Observations  
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A.5 Median Maximum Daily Precipitation (2026-2045) 
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A.6 Median Maximum Daily Precipitation (2081-2100) 
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A.7 Average Median Maximum Daily Precipitation  

 



www.manaraa.com

 

67 
 

B. ACCESS1-3 

B.1 Median Maximum Sub-Daily Precipitation Model-Observations 
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B.2 Median Maximum Sub-Daily Precipitation (2026-2045) 
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B.3 Average Median Maximum Sub-Daily Precipitation 
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B.4 Median Maximum Daily Precipitation Model-Observations 
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B.5 Median Maximum Daily Precipitation (2026-2045) 
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B.6 Median Maximum Daily Precipitation (2081-2100) 
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B.7 Average Median Maximum Daily Precipitation  
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C. FGOALS-g2 

C.1 Median Maximum Sub-Daily Precipitation (2026-2045) 
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C.2 Median Maximum Sub-Daily Precipitation (2081-2100) 
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C.3 Average Median Maximum Sub-Daily Precipitation  
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C.4 Median Maximum Daily Precipitation (2026-2045) 
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C.5 Average Median Maximum Daily Precipitation  
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D. CNRM-CM5 

D.1 Median Maximum Sub-Daily Precipitation Model-Observations 
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D.2 Median Maximum Sub-Daily Precipitation (2026-2045) 
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D.3 Median Maximum Sub-Daily Precipitation (2081-2100) 
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D.4 Average Median Maximum Sub-Daily Precipitation 
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D.5 Median Maximum Daily Precipitation Model-Observations 
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D.6 Median Maximum Daily Precipitation (2026-2045) 
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D.7 Median Maximum Daily Precipitation (2081-2100) 
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D.8 Average Median Maximum Daily Precipitation  
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E. MRI-CGCM3 

E.1 Median Maximum Sub-Daily Precipitation Model-Observations 
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E.2 Median Maximum Sub-Daily Precipitation (2026-2045) 
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E.3 Median Maximum Sub-Daily Precipitation (2081-2100) 
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E.4 Average Median Maximum Sub-Daily Precipitation  
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E.5 Median Maximum Daily Precipitation Model-Observations 
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E.6 Median Maximum Daily Precipitation (2026-2045) 
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E.7 Median Maximum Daily Precipitation (2081-2100) 

 



www.manaraa.com

94 
 

E.8 Average Median Maximum Daily Precipitation  
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F. MRI-ESM1 

F.1 Median Maximum Sub-Daily Precipitation Model-Observations 
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F.2 Median Maximum Sub-Daily Precipitation (2026-2045) 
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F.3 Median Maximum Sub-Daily Precipitation (2081-2100) 
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F.4 Average Median Maximum Sub-Daily Precipitation 
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F.5 Median Maximum Daily Precipitation Model-Observations 
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F.6 Median Maximum Daily Precipitation (2026-2045) 
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F.7 Median Maximum Daily Precipitation (2081-2100) 
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F.8 Average Median Maximum Daily Precipitation  

 


